Synthesis and crystal structure of $\left[\left(\mathrm{Me}_{4} \mathrm{C}_{2} \mathrm{Cp}_{2} \mathrm{SmCl} \cdot \mathrm{MgCl}_{2} \cdot 3 \mathrm{THF}\right) \mathrm{THF}\right]_{2}$

Chaode Sun, Gecheng Wei, Zhongsheng Jin and Wenqi Chen
Changchun Institute of Applied Chemistry, Academia Sinica, Changchun 130022 (China)

(Received October 17, 1992; in revised form December 3, 1992)

Abstract

$\left[\left(\mathrm{Me}_{4} \mathrm{C}_{2} \mathrm{Cp}_{2} \mathrm{SmCl} \cdot \mathrm{MgCl}_{2} \cdot 3 \text { THF }\right) \mathrm{THF}\right]_{2}$ was prepared by the reaction of $\mathrm{Me}_{4} \mathrm{C}_{2} \mathrm{Cp}_{2} \mathrm{MgCl}_{2} \cdot 4 \mathrm{THF}\left(\mathrm{Cp}=\mathrm{C}_{5} \mathrm{H}_{4}\right.$, THF $=$ tetrahydrofuran) with SmCl_{3} in THF. The crystals belong to triclinic space group $P \overline{1}$ with a 12.149(3), b 13.187(4), c 13.810(5) \AA A , α 117.23(2), $\beta 94.07(2), \gamma 62.86(2)^{\circ}, V=1723.9(1.0) \AA^{3}$. In the molecular structure of the title compound there is a symmetrical centre and a quadrilateral formed by $\mathrm{Sm}, \mathrm{Mg}, \mathrm{Cl}_{1}, \mathrm{Cl}_{2}$ atoms. Two centroids of the cyclopentadienyls, bridged by a tetramethylethano group form with three bridging chlorine atoms $\left(\mathrm{Cl}_{1}, \mathrm{Cl}_{2}, \mathrm{Cl}_{1 \mathrm{a}}\right)$ a pseudo-trigonal bipyramid around Sm . Three oxygen atoms of TIIF and threc chlorine atoms $\left(\mathrm{Cl}_{1}, \mathrm{Cl}_{2}, \mathrm{Cl}_{3}\right)$ constitute a distorted octahedron around Mg .

1. Introduction

In order to prevent the disproportionation of bis (cyclopentadienyl) lighter lanthanide chlorides the bridged bis(cyclopentadienyl) group is customarily used as a ligand [1-3]. However, a few crystal structures of lanthanide compounds bearing bridged bis(cyclopentadienyl) ligand such as $\left(\mathrm{Me}_{2} \mathrm{SiCp}_{2} \mathrm{NdCl}_{2} \mathrm{Cl}^{-} \mathrm{Li}^{+}\right.$ (thf) $)_{2}$ [4], $\mathrm{Me}_{2} \mathrm{SiCp}_{2} \mathrm{NdCH}\left(\mathrm{SiMe}_{3}\right)_{2}$ [4], $\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Cp}_{2}-$ $\mathrm{Yb}(\mathrm{thf})_{2}$ [5], $\left(\mathrm{Me}_{4} \mathrm{C}_{2} \mathrm{Cp}_{2} \mathrm{YbCl}_{2}\right)^{-}\left(\mathrm{Mg}_{2} \mathrm{Cl}_{3} \cdot 6 \mathrm{THF}\right)^{+}$[6], $\mathrm{Me}_{4} \mathrm{C}_{2} \mathrm{Cp}_{2} \mathrm{SmC}_{5} \mathrm{H}_{5}$ [7] and [$\left.\mathrm{IMe}_{4} \mathrm{C}_{2} \mathrm{Cp}_{2} \mathrm{SmCl} \cdot \mathrm{THF}\right]_{2}$ [8] have been reported. Here we report the synthesis and crystal structure of a new type of tetramethyl-ethano-bridged bis(cyclopentadienyl)samarium chloride.

2. Experimental section

2.1. Preparation of the crystal

Solid $\mathrm{SmCl}_{3}(0.9 \mathrm{~g}, 3.5 \mathrm{mmol})$ in a glass bottle was heated over a naked flame under reduced pressure for several minutes, the glass bottle cooled by filling it with nitrogen, and THF (40 ml) was added. The resulting solution was left to stand overnight. To the SmCl_{3} solution was added $\mathrm{Me}_{4} \mathrm{C}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{MgCl}_{2} \cdot(\mathrm{THF})_{4}(2.87\right.$

[^0]$\mathrm{g}, 5.25 \mathrm{mmol}$) and the mixture was allowed to react with stirring for two days. THF was removed and toluene (20 ml) was added to the residue with stirring for half an hour. The toluene solution was centrifuged to remove undissolved solids and the resulting clear solution was evaporated to dryness. The residue was dissolved in THF and to the resuiting solution was added a suitable amount of hexane which was then left to stand overnight. At room temperature a yellow fragment of crystal was obtained in ca. 50% yield.

2.2. Determination of crystal structure

A single crystal of dimensions $0.24 \times 0.44 \times 0.55 \mathrm{~mm}$ was selected for structure analysis. Diffraction data were collected on a Nicolet R3m/E four-circle diffractometer using a graphite monochromator, Mo $\mathrm{K} \alpha$ radiation ($0.71069 \AA$), ω scan mode, scan speed of $7^{\circ} / \mathrm{min}$ and scan width of 1.2°. A total of 6566 reflections was measured within the range of $3<2 \theta<54^{\circ}$, of which 3529 reflections with $I>3 \sigma(I)$ were considered observed. Intensities were corrected for Lp factors and absorption effect. The crystal data are listed in Table 1.

The coordinates of samarium atom derived from Patterson analysis and other non-hydrogen atoms were found by difference Fourier maps. The atomic coordinates and anisotropic temperature factors for all nonhydrogen atoms were refined by block-matrix leastsquares. The coordinates of hydrogen atoms were cal-

TABLE 1. Crystal data

$\left.\left[\mathrm{Me}_{4} \mathrm{C}_{2} \mathrm{Cp}_{2} \mathrm{SmCl} \cdot \mathrm{MgCl}_{2} \cdot 3 \mathrm{THF}\right) \mathrm{THF}\right]_{2}$	M.W. 1563.5
triclinic	Space group $P \overline{1}$
$a 12.149(3) \AA$	$b 13.187(4) \AA$
$c 13.810(5) \AA$	$\alpha 117.23(2)^{\circ}$
$\beta 94.07(2)^{\circ}$	$\gamma 62.86(2)^{\circ}$
$V 1723.9(1.02) \AA^{3}$	$Z=1$
$\Gamma(000)-802$	$D_{i} 1.51 \mathrm{~g} / \mathrm{cm}^{3}$

$\mu 20.2 \mathrm{~cm}^{-1}(\mathrm{Mo} \mathrm{K} \alpha, \lambda=0.71069 \AA)$
culated according to theoretical models. Further refinements led to final $R=0.0771, R_{w}=0.0798$ ($w=$ $\left.\left[\sigma^{2}\left(F_{0}\right)+\mathrm{g} F_{0}^{2}\right]^{-1}\right)$. The calculations were performed on an Eclipse $S / 140$ computer using shelxti programs.

Atomic coordinates and isotropic thermal parameters, selected bond lengths and bond angles are given in Tables 2, 3 and 4, respectively.

3. Results and discussion

Figure 1a gives a view of the title complex. There is a symmetrical centre in the molecule of $\left[\left(\mathrm{Me}_{4} \mathrm{C}_{2} \mathrm{Cp}_{2}-\right.\right.$ $\left.\left.\mathrm{SmCl} \cdot \mathrm{MgCl}_{2} \cdot 3 \mathrm{THF}\right) \mathrm{THF}\right]_{2}$. Two centroids of cy clopentadienyl rings and three chlorine atoms $\left(\mathrm{Cl}_{1}\right.$, $\mathrm{Cl}_{2}, \mathrm{Cl}_{1 \mathrm{a}}$) (Fig. 2a) form a distorted trigonal bipyramid around Sm . The coordination number of Sm is 9 . Three THF oxygen atoms, two chlorine atoms (Cl_{1} and Cl_{2}) and one chlorine atom form an octahedron around Mg . The coordination number of Mg is 6 . The average value of $\mathrm{Sm}-\mathrm{C}\left(\eta^{5}-\mathrm{C} p_{1}\right)$ is $2.66(9) \AA, \mathrm{Sm}-\mathrm{C}\left(\eta^{5}-\mathrm{Cp}_{2}\right)$ $2.68(5) \AA$; $\mathrm{Sm}-\mathrm{Cp}_{1}$ (centroid) $2.38 \AA . \mathrm{Sm}-\mathrm{Cp}_{2}$ (centroid) $2.40 \AA$. Angle $\mathrm{Cp}_{1}-\mathrm{Sm}-\mathrm{Cp}_{2}$ is $117.4^{\circ}(\mathrm{Sm}$ coordination number is 9). In $\left(\mathrm{Me}_{4} \mathrm{C}_{2} \mathrm{Cp}_{2} \mathrm{YbCl}_{2}\right)^{-}$$\left(\mathrm{Mg}_{2} \mathrm{Cl}_{3} \cdot 6 \mathrm{THF}\right)^{+}$[6] angle $\mathrm{Cp}_{1}-\mathrm{Yb}-\mathrm{Cp}_{2}$ is $121.0(\mathrm{Yb}$ coordination number 8). In $\mathrm{Me}_{4} \mathrm{C}_{2} \mathrm{Cp}_{2} \mathrm{SmC}_{5} \mathrm{H}_{5}$ (THF) [7] angle $\mathrm{Cp}_{1}-\mathrm{Sm}-\mathrm{Cp}_{2}$ is 111.5° (Sm coordination number 10). Angle $\mathrm{Cp}_{1}-\mathrm{Sm}-\mathrm{Cp}_{2}$ in the title compound is intermediate between those of $\mathrm{Cp}_{1}-\mathrm{Yb}-\mathrm{Cp}_{2}$ and $\mathrm{Cp}_{1}-\mathrm{Sm}-\mathrm{Cp}_{2}\left(\mathrm{Me}_{4} \mathrm{C}_{2} \mathrm{Cp}_{2} \mathrm{SmC}_{5} \mathrm{H}_{5}\right)$. This is explained by the hypothesis that the size of the angle $\mathrm{Cp}_{1}-\mathrm{Ln}-\mathrm{Cp}_{2}$ is related to the coordination number of Ln atom, which increases as angle $\mathrm{Cp}_{1}-\mathrm{Ln}-\mathrm{Cp}_{2}$ decreases. The coordination number of $\left[\mathrm{Me}_{4} \mathrm{C}_{2} \mathrm{Cp}_{2} \mathrm{SmCl}\right.$ - THF $]_{2}$ is equal to that in the title compound and angle $\mathrm{Cp}_{1}-\mathrm{Sm}_{\mathrm{C}} \mathrm{Cp}_{2}\left(\left[\mathrm{Me}_{4} \mathrm{C}_{2} \mathrm{Cp}_{2} \mathrm{SmCl} \cdot \mathrm{THF}\right]_{2}\right)$ is 115.4°, near to that for $\mathrm{Cp}_{1}-\mathrm{Sm}-\mathrm{Cp}_{2}$ (title compound).

Angles $C_{11}-C_{16}-C_{26}$ and $C_{21}-C_{26}-C_{16}$ are $114.0(15)^{\circ}$ and $110.6(12)^{\circ}$, respectively. In $\mathrm{Me}_{4} \mathrm{C}_{2} \mathrm{Cp}_{2}$ SmC 5_{5} (THF) angles $\mathrm{C}_{11}-\mathrm{C}_{16}-\mathrm{C}_{26}$ and $\mathrm{C}_{21}-\mathrm{C}_{26}-\mathrm{C}_{10}$ are 111.8° and 110.3°, and in $\left(\mathrm{Me}_{4} \mathrm{C}_{2} \mathrm{Cp}_{2} \mathrm{YbCl}_{2}\right)^{-}\left(\mathrm{Mg}_{2}-\right.$ $\left.\mathrm{Cl}_{3} \cdot 6 \mathrm{THF}\right)^{+}$(THF) these two angles are 114.6°. The conformation of the Cp rings (Fig. 1b) in the title

TABLE 2. Atomic coordinates $\left(\times 10^{+}\right)$and thermal parameters $\left(\AA^{2} \times 10^{3}\right)$

	x	y	z	$U_{\text {cal }}$
Sm	$4767(1)$	$6556(1)$	-485(1)	26(1)
Cl(1)	3743 (4)	$6135(2)$	998(2)	$36(2)$
Cl(2)	288344	$8977(2)$	$1108(2)$	$35(2)$
Cl(3)	11344)	$7777(3)$	$3240(2)$	$45(2)$
Mg	184605	$8509(3)$	$2254(3)$	$33(3)$
O(1)	$679(11)$	$8210(7)$	$1085(7)$	$33(5)$
O(2)	$486(10)$	10444(7)	30570	38(4)
O(3)	28.33111	\% 452 (8)	$3458(7)$	$47(5)$
O(4)	779819	722103)	$3443817)$	$132(13)$
C(1)	$6429(16)$	$6904(9)$	- 125409	$39(6)$
C(12)	$5747(16)$	$8093(10)$	$-238(10)$	$40(8)$
C(13)	$6068(17)$	$7759(11)$	619(10)	$39(8)$
(114)	$8906017)$	(4443(12)	1.7(11)	$45(9)$
C(15)	$7121(15)$	$5952(10)$	-903(11)	$39(8)$
C(16)	$6305018)$	$6887(11)$	-2401(9)	+9(9)
(17)	08590153	$78.21(10)$	- $2300(10)$	$42(7)$
C(18)	$7428(18)$	5960 (11)	- $321+10)$	$45(9)$
C(21)	4424(15)	6690)(10)	$-2374(8)$	$33(7)$
(22)	$4770015)$	5379109	$-2683(8)$	$27(7)$
(23)	$3911(18)$	$5295(12)$	--2331(9)	$43(9)$
C(24)	2840 (18)	$6596(12)$	-1502(30)	$40(9)$
C(25)	$3219(16)$	7426(11)	$-1707(10)$	$40(8)$
C(26)	$50880(17)$	7231010	$-2745(8)$	$46(8)$
C(2)	4241211	8714109	- $2255(11)$	$58(9)$
C(28)	5214201	$6670(14)$	- $4008(10)$	$57(10)$
C31)	-..215	9097(9)	61210	3660
C(32)	- -704201	$85.1(14)$	$-111(12)$	61(12)
C(33)	-1040(17)	$7822(14)$	$397(12)$	40(10)
C(34)	$238(18)$	7272(13)	$7300(11)$	$36 \times 10)$
C(4)	- 74×169	$10895(11)$	36.34 (11	$45(7)$
C(42)	$-1543(10)$	$12347(11)$	4074011)	$43(7)$
C(43)	-486(18)	$12678(1)$	$427+111)$	$61(9)$
C(4)	596183	$11569(1)$	$3299(11)$	42(9)
C(51)	24071231	97720	$4028(12)$	71(14)
C(52)	$3428(23)$	$9374(21)$	$5164(15)$	99(15)
C(53)	$4639(29)$	$8458(19)$	431+14)	$72(13)$
C(54)	$4211(19)$	$8636013)$.325(1)	$59(10)$
C(6)	8265038	6948211	$2971(17)$	$146(23)$
C(62)	911808	$5573(26)$	$23 / 4(17)$	141(20)
(163$)$	917507	5008201	3050(24)	107(19)
(664)	$815729)$	013420	4001(22)	10721)

TABLE 3. Bond lengths (A)

Sm-(1) 1)	2.842(4)	$\mathrm{Sm}-\mathrm{Cl}(2)$	$2.809(2)$
$\mathrm{Sm}-\mathrm{C}(11)$	$2.705(20)$	Sm-C(12)	$2.675020)$
Sm -C(13)	$2.660(19)$	Sm - C(14)	$2.638(20)$
$\mathrm{Sm}-\mathrm{Cl} 15)$	$2.647(19)$	Sm-C(2)	$2.085(17)$
Sm-C(22)	$2703(11)$	Smme(23)	$2.685(17)$
$5 \mathrm{~m}-\mathrm{C}(24)$	$2.696(19)$	$\mathrm{Sm}-\mathrm{Cl} 25)$	$2.657(16)$
$\mathrm{Sm}-\mathrm{Cl}(\mathrm{a})$	2.896(3)	(1) 1) Mg	2.672(4)
(1) 1 --Sma	2.89643)	(1) 2) Mg	$2.520(8)$
Cl(3)-Mg	2.382(8)	Mg-O(1)	$2.091(12)$
$\mathrm{Mg}-\mathrm{O}(2)$	2.07278	Mg-0(3)	$2083(12)$
(16)-C(17)	(1.551(29)	C(16)-C(18)	1.548(15)
(16) C(26)	1.34520)	(21)-C(26)	$1.531(28)$
(26)-(27)	1.54715	(120)-(128)	1.538(17)
C(11)-(1)	1.534 109		

Fig. 1. Structure of $\left[\left(\mathrm{Me}_{4} \mathrm{C}_{2} \mathrm{Cp}_{2} \mathrm{SmCl} \cdot \mathrm{MgCl}_{2} \cdot 3 \mathrm{THF}\right) \mathrm{THF}_{2}\right.$.
compound is different from that of nonbridged Cp rings. The bridged Cp rings have an almost eclipsed conformation. The tetramethylethylene adopts a distorted staggered conformation with the torsion angles:

Fig. 2. Perspective drawing of atom space arrangement.
$\mathrm{C}(11)-\mathrm{C}(16)-\mathrm{C}(26)-\mathrm{C}(21)=-38.6(1.2)^{\circ}, \quad \mathrm{C}(17)-$ $C(16)-C(26)-C(27)=-37.0(1.6)^{\circ}, \quad C(18)-C(16)-$ $C(26)-C(28)=-38.0(2.1)^{\circ}$, these three angles are almost equal. The average lengths of the $\mathrm{C}(16)-\mathrm{C}(17)$ and $\mathrm{C}(26)-\mathrm{C}(27)$ bonds is $1.549(22) \AA$; the average value of $C(16)-C(18)$ and $C(26)-C(28)$ is $1.543(16) A$. Both bond lengths are almost the same, which is not the case in $\left(\mathrm{Me}_{4} \mathrm{C}_{2} \mathrm{Cp}_{2} \mathrm{YbCl}_{2}\right)^{-}\left(\mathrm{Mg}_{2} \mathrm{Cl}_{3} \cdot 6 \mathrm{THF}\right)^{+}$(THF) [6].

In $\left[\left(\mathrm{Me}_{4} \mathrm{C}_{2} \mathrm{Cp}_{2} \mathrm{SmCl} \cdot \mathrm{MgCl}_{2} \cdot 3 \mathrm{THF}\right) \mathrm{THF}\right]_{2}$ there are three kinds of chlorine atoms. The Cl_{1} atom links to $\mathrm{Sm}, \mathrm{Sm}_{\mathrm{a}}$ and Mg with $\mu_{3}-\mathrm{Cl}$; the Cl_{2} links to Sm and Mg with $\mu_{2}-\mathrm{Cl}$; the Cl_{3} links to Mg with $\mu_{1}-\mathrm{Cl}$. There are threc kinds of $\mathrm{Sm}-\mathrm{Cl}$ distances, $\mathrm{Sm}-\mathrm{Cl}_{1}\left(\mu_{3}\right)$ $=2.842(4) \AA, S m-\mathrm{Cl}_{2}\left(\mu_{2}\right)=2.809(2) \AA, \mathrm{Sm}-\mathrm{Cl}_{1 \mathrm{a}}\left(\mu_{3}\right)$

TABLE 4. Bond angles $\left({ }^{\circ}\right)$

$\mathrm{Cl}(1)-\mathrm{Sm}-\mathrm{Cl}(2)$	$72.2(1)$	$\mathrm{Cl}(2)-\mathrm{Sm}-\mathrm{Cl}(1 \mathrm{a})$	$142.8(1)$
$\mathrm{Cl}(1)-\mathrm{Sm}-\mathrm{Cl}(1 \mathrm{a})$	$71.3(1)$	$\mathrm{Sm}-\mathrm{Cl}(1)-\mathrm{Sm}$	$108.7(1)$
$\mathrm{Sm}-\mathrm{Cl}(1)-\mathrm{Mg}$	$101.3(2)$	$\mathrm{Sm}-\mathrm{Cl}(2)-\mathrm{Mg}$	$106.1(1)$
$\mathrm{Mg}-\mathrm{Cl}(1)-\mathrm{Sm}$	$92.3(2)$		
$\mathrm{Cl}(1)-\mathrm{Mg}-\mathrm{Cl}(2)$	$150.0(2)$	$\mathrm{Cl}(1)-\mathrm{Mg}-\mathrm{Cl}(3)$	$91.6(2)$
$\mathrm{Cl}(2)-\mathrm{Mg}-\mathrm{Cl}(3)$	$79.7(2)$	$\mathrm{Cl}(1)-\mathrm{Mg}-\mathrm{O}(1)$	$92.7(4)$
$\mathrm{Cl}(2)-\mathrm{Mg}-\mathrm{O}(1)$	$171.8(2)$	$\mathrm{Cl}(2)-\mathrm{Mg}-\mathrm{O}(1)$	$90.2(4)$
$\mathrm{Cl}(1)-\mathrm{Mg}-\mathrm{O}(2)$	$89.5(4)$	$\mathrm{O}(1)-\mathrm{Mg}-\mathrm{O}(2)$	$87.4(4)$
$\mathrm{Cl}(3)-\mathrm{Mg}-\mathrm{O}(2)$	$169.8(5)$	$\mathrm{Cl}(2)-\mathrm{Mg}-\mathrm{O}(3)$	$87.6(5)$
$\mathrm{Cl}(1)-\mathrm{Mg}-\mathrm{O}(3)$	$97.9(4)$	$\mathrm{O}(1)-\mathrm{Mg}-\mathrm{O}(3)$	$172.7(4)$
$\mathrm{Cl}(3)-\mathrm{Mg}-\mathrm{O}(3)$	$94.3(3)$	$\mathrm{Mg}-\mathrm{O}(1)-\mathrm{C}(31)$	$125.4(9)$
$\mathrm{O}(2)-\mathrm{Mg}-\mathrm{O}(3)$	$91.1(4)$	$\mathrm{C}(11)-\mathrm{C}(16)-\mathrm{C}(17)$	$106.4(13)-\mathrm{C}(26)$
$\mathrm{C}(11)-\mathrm{C}(16)-\mathrm{C}(18)$	$86.0(4)$	$\mathrm{C}(18)-\mathrm{C}(16)-\mathrm{C}(26)$	$114.0(15)$
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(26)$	$105.9(11)$	$\mathrm{C}(16)-\mathrm{C}(26)-\mathrm{C}(27)$	$113.5(12)$
$\mathrm{C}(16)-\mathrm{C}(26)-\mathrm{C}(21)$	$10.9(12)$	$128)$	$110.0(14)$
$\mathrm{C}(21)-\mathrm{C}(26)-\mathrm{C}(27)$	$110.6(12)$		$1(14)$
$\mathrm{C}(21)-\mathrm{C}(26)-\mathrm{C}(28)$	$108.8(14)$		

TABLE 5. Atom plane equations and dihedral angles of $\left.\left(\mathrm{Me}_{4} \mathrm{C}_{2} \mathrm{Cp}_{2} \mathrm{SmCl} \cdot \mathrm{MgCl}_{2} \cdot 3 \mathrm{THF}\right) \mathrm{THF}\right]_{2}$

Plane	Equation, atoms and deviation of atoms				Dihedral angles	
1	$9.214 x+2.502 y+8.005 z=5.7130$					
	$\begin{gathered} \mathrm{Sm} \\ -0.0684 \end{gathered}$	Cl_{1}	Cl_{2}	Mg		
		0.0701	0.0769	-0.0786		
2	$9.298 x+$	724y+7.4	$z=6.511$		5.8	
	$\begin{gathered} \mathrm{Cl}_{1} \\ 0.000 \end{gathered}$	$\begin{gathered} \mathrm{Sm} \\ 0.000 \end{gathered}$	$\begin{gathered} \mathrm{Cl}_{1 \mathrm{a}} \\ 0.000 \end{gathered}$	$\begin{gathered} \mathrm{Sm}_{a} \\ 0.000 \end{gathered}$		
3	$9.214 x+$	$502 y+8.00$	$z=6.003$		0.0	5.8
	$\begin{gathered} \mathrm{Sm}_{\mathrm{a}} \\ 0.0684 \end{gathered}$	$\begin{array}{r} \mathrm{Cl}_{1 \mathrm{a}} \\ -0.0701 \end{array}$	$\begin{array}{r} \mathrm{Cl}_{2 \mathrm{af}} \\ -0.0769 \end{array}$	$\begin{gathered} \mathrm{Mg}_{\mathrm{a}} \\ 0.0786 \end{gathered}$		

$=2.896(3) \AA . \mathrm{Sm}_{\mathrm{Cl}}-\mathrm{Cl}_{1}\left(\mu^{3}\right)$ and $\mathrm{Sm}-\mathrm{Cl}_{1 \mathrm{a}}\left(\mu_{3}\right)$ distances are greater than that of $\mathrm{Sm}-\mathrm{Cl}_{2}\left(\mu_{2}\right)$.

In title complex there are three different kinds of $\mathrm{Mg}-\mathrm{Cl}$ bond lengths: $\mathrm{Mg}-\mathrm{Cl}_{3}\left(\mu_{1}\right)=2.362(6) \AA, \mathrm{Mg}-$ $\mathrm{Cl}_{2}\left(\mu_{2}\right)=2.520(8) \AA, \mathrm{Mg}-\mathrm{Cl}_{1}\left(\mu_{3}\right)=2.672(4) \AA$. Length of the $\mathrm{Mg}-\mathrm{Cl}_{2}\left(\mu_{2}\right)$ bond is similar to the corresponding $\mathrm{Mg}-\mathrm{Cl}\left(\mu_{2}\right)$ bond in $\left(\mathrm{Me}_{4} \mathrm{C}_{2} \mathrm{Cp}_{2} \mathrm{YbCl}_{2}\right) \quad\left(\mathrm{Mg}_{2} \mathrm{Cl}_{3}\right.$. $6 \mathrm{THF})^{+} \mathrm{THF[6]}$. The three $\mathrm{Mg}-\mathrm{O}(\mathrm{THF})$ bond lengths ($\mathrm{Mg}-\mathrm{O}(1)$ 2.091(12), $\quad \mathrm{Mg}-\mathrm{O}(2)$ 2.072(7), $\quad \mathrm{Mg}-\mathrm{O}(3)$ $2.083(12) \AA$) are almost equal. The average length of
$\mathrm{Mg}-\mathrm{O}$ bonds is $208(2$) \AA. From Fig. 2b and Table 5 it can be seen that Sm, Cl and Mg form three planar quadrilaterals. $\mathrm{Sm}_{1}, \mathrm{Cl}_{1}, \mathrm{Cl}_{12}, \mathrm{Sm}$ form a parallelogram. The nip angle between the planes formed by $\mathrm{Mg}_{1}, \mathrm{Cl}_{1}, \mathrm{Cl}_{2}, \mathrm{Mg}$ (or $\mathrm{Mg}_{\mathrm{i}}, \mathrm{Cl}_{14}, \mathrm{Cl}_{24}, \mathrm{Sm}_{\mathrm{a}}$) and Sm_{a}, $\mathrm{Cl}_{1}, \mathrm{Cl}_{13}, \mathrm{Sm}$ is 5.8°. The three quadrilaterals adopt a chair conformation. The $\mathrm{Sm}-\mathrm{Sm}_{\mathrm{a}}$ distance is $4.66(3){ }^{\circ} \mathrm{A}$. and for $\mathrm{Mg}-\mathrm{Sm} 4.26(4) \AA$.

References

1 J.N. John and M. Tsusui, /norg. Chem., 20 (1981) 1602.
2 C. Qian. C. Ye. H. Lu. Y. Li and Y. Huang. I. Organomet. Chem., 263 (1984) 333
3 C. Qian. Z. Xic and Y. Huang. J. Organomet. Chem., 323 (1987) 285.

4 G. Jeske, L.E. Schock. P.N. Swepston. H. Schumann and TJ. Marks, I. Am. Chem Soc.. 107 (1985) 8103.
5 S. Swamy. S. Lochel and 11. Schumann, J. Organomet. Chem. 374 (1989) 51.

6 P. Yan, N. Hu, Z. Jin and W. Chen. J. Organomet. Chem.. 391 (1990) 313

7 C. Sun. Z. Jin. G. Wei and W. Chen. . Strmet. Chom., to be published.
8 C. Sun. G. Wei, Z. Jin and W. Chen, J. Organomet Chem. submitted for publication.

[^0]: Correspondence to: Dr. W. Chen.

